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Abstract

We study continuity envelopes in spaces of generalised smoothness vaf,'tp) and F,gf, ") and give

)

some new characterisations for spaces B;,‘;’q’. The results are applied to obtain sharp

asymptotic estimates for approximation numbers of compact embeddings of type id :
Bfni}’w)(U) - B . (U), where f<s; — s, <7+ 1 and U stands for the unit ball in R". In case of
entropy numbers we can prove two-sided estimates.
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0. Introduction

Spaces of generalised smoothness have already been studied for long from
different points of view, coming from the interpolation side (with a function
parameter), see the results by Merucci [42] and Cobos and Fernandez [13], whereas
the rather abstract approach (approximation by series of entire analytic functions
and coverings) was independently developed by Gol’dman and Kalyabin, see [24—
28,32,33]. Furthermore, the survey by Kalyabin and Lizorkin [36] and the appendix
[41] cover the extensive (Russian) literature at that time. More recently, we mention
the contributions of Gol’dman [27,28], Netrusov [45] and Burenkov [5]. The notion
was revived and extended in the way we shall use it in connection with /limiting
embeddings and spaces on fractals by Edmunds and Triebel [21,22], Leopold [38,39]
and Moura [43,44]. Closely linked, but slightly different is the approach to more
general Lipschitz spaces as developed by Edmunds and Haroske [17,18,29]. The
present state of the art is reviewed and covered in [23] by Farkas and Leopold linking
function spaces of generalised smoothness with negative definite functions—and thus
referring to applications for pseudo-differential operators (as generators of sub-
Markovian semi-groups). Plainly, these latter applications and also the topic in its
full generality are out of the scope of the present paper; it explains, however, the
increased interest on function spaces of generalised smoothness quite recently. As a

prototype one can think of spaces of Besov type B},A:LIW>(R"), where the function ¥

might behave like ¥(x) = (1 + |logx|)”, xe(0,1], beR; for example, we have for
l<p< oo, 0<g< oo, 0<s<1, an easy characterisation by differences,

q 1/q
(s, ¥) ! d¢
1By [~ F1Lp | + i "

(with the usual modification if ¢ = o0).

In contrast to the above-described long history and variety of contributions
devoted to spaces of generalised smoothness, continuity envelopes represent a very
new tool for the characterisation of function spaces, developed only recently in
[30,31,53]. Nevertheless, it promises by now already not only surprisingly sharp
results based on classical concepts, but also a lot of applications, e.g. to the study of
compact embeddings. We return to this point later. Roughly speaking, a continuity
envelope €c(X) of a function space X consists of a so-called continuity envelope
function

55~ sip L0

sup
Irxl<t 1t

(1) sup || f(-+h) —f()IL]|

|| <t

>0,

together with some fine index uy; here w(f, ) stands for the modulus of continuity,
as usual. Forerunners of continuity envelopes in a wider sense are well-known for
decades; among the big amount of work devoted to the study of limiting or sharp
embeddings involving spaces that contain (at least) continuous functions we only
want to mention a few: dealing with spaces of type B, , F, we refer to the result of
Sickel and Triebel [49, Theorem 3.3.1] (also for further historical comments), the
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paper [34] by Kalyabin concerns the question of embeddings into C in the special
context of spaces of generalised smoothness mentioned above, whereas the famous
result [2] of Brézis and Wainger can be regarded as some origin of the idea of

continuity envelopes at all. It states that some function ueH;M/ P(R"), 1<p< oo, is
‘almost” Lipschitz-continuous in the sense that for all x,yeR”", 0<|x — y| <1,

[u(x) = u(y)| < elx = yllloghx — |7 ||ul Hy =7 (R")]. (1)

Here ¢ is a constant independent of x,y and u, and l%—i- 117 = 1. We studied the

sharpness of this assertion and parallel questions for more general spaces in [17,18].
These considerations led us finally to the introduction of continuity envelopes:
obviously (1) results after some reformulation in

I+n/p ,
sar(n<cllogt]”, 0<i<l.

Turning to spaces defined on bounded domains, say, the unit ball UcR”" for

simplicity, it is reasonable to consider compact embedding operators, id :

BI(JA,;W)(U)*C(U), where C stands for the space of complex-valued bounded

uniformly continuous functions. More precisely, we shall further inquire into the
nature of this compactness and characterise the asymptotic behaviour of the
corresponding approximation numbers; we prove

s, 1

y — 1
ar(id : BST(U)> C(U)) ~k "P®(k )™, keN,

rq

assuming that 2<p< o0, 0<g< o0, seR with ;’—,<s<lﬂ) + 1, and ¥ as above. Studying
entropy numbers instead of approximation numbers in the same context, we obtain
two-sided estimates of the same type.

Let us finally mention that parallel studies, when questions of (Lipschitz-)
continuity are replaced by inquiries about the unboundedness of functions, led to the
concept of growth envelopes in [30,31,53] and were continued by Bricchi, Caetano,
Haroske and Moura in different settings, cf. [4,7-9].

The paper is organised as follows. We collect the necessary background material in
Section 1; in Section 2 we obtain different equivalent characterisations for spaces
B,(;ijm. This is not only needed afterwards, but also of some interest of its own. Our
main result on continuity envelopes in spaces of generalised smoothness can be
found in Section 3. Section 4 contains entropy and approximation number estimates
representing both an application of our envelope assertions, and the starting point
for further possible applications in spectral theory; however, this is out of the scope
of the present paper. We shall only give a brief account on the consequences we have
in mind.
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1. Preliminaries
1.1. General notation

As usual, R" denotes the n-dimensional real Euclidean space, N the collection of

99

all natural numbers and Ny = NuU{0}. We use the equivalence “~" in
ag~bor  ¢(x)~y(x)

always to mean that there are two positive numbers ¢; and ¢, such that
cap<bp<crar or c1o(x)<yY(x)<cr0(x)

for all admitted values of the discrete variable k or the continuous variable x, where
(ax), (br), are non-negative sequences and ¢, i are non-negative functions. If ae R
then a; := max(a,0) and [a] denotes the integer part of a.

Given two quasi-Banach spaces X and Y, we write X< Y if X< Y and the
natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by ¢, occasionally with
additional subscripts within the same formula. If not otherwise indicated, log is
always taken with respect to base 2.

Apart from the last section we shall always deal with function spaces on R”"; so for
convenience we shall usually omit the “R"” from their notation.

1.2. Function spaces of generalised smoothness

Recall our introductory remarks on spaces of generalised smoothness, relating this
topic with some historical background as well as the present state of the art. In our
context, we shall be concerned with function spaces of generalised smoothness of
Besov and Triebel-Lizorkin type, where the usual main smoothness parameter s is
replaced by a couple (s, ¥) and ¥ is a slowly varying function (in Karamata’s sense).

Definition 1.1. A positive and measurable function ¥ defined on the interval (0, 1] is
said to be slowly varying if
P (st)

lim 0 =1, se(0,1]. (2)

Example 1.2. Any function of the form

() :exp{—/tle(s)%}, re (0,1,

where ¢ is a measurable function with lim,_, ¢ &(s) = 0, is slowly varying (actually this
is a characterisation: any slowly varying function is equivalent to a function ¥ of the
above type for an appropriate function ¢); in particular,

Py(x) = (1+ [logx|)’, xe(0,1], beR, (3)
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is slowly varying; we return to this particular choice in the sequel for illustration. We
remark that ¥ is also an example of an admissible function in the sense of [21,22].
We recall that an admissible function ¥ is a positive monotone function defined on
(0, 1] such that ¥(2=%)~¥(27), je N. An admissible function is, up to equivalence,
a slowly varying function (cf. Proposition 1.9.7 of [3]).

The proposition below gives some properties of slowly varying functions that will
be useful in what follows. We refer to the monograph [1] for details and further
properties; see also [19,54, Chapter V], and, quite recently, [46,47].

Proposition 1.3. Let ¥ be a slowly varying function.

(i) For any 0>0 there exists ¢ = ¢(0)> 1 such that
1 P (st) 5

—P<—L<es™0, 1,5€(0,1].
oS (1) es™, t,5€(0,1]

(i1) For each a>0 there is a decreasing function ¢ and an increasing function ¢ with
() ~¢(t) and *P(t)~o(t).

(iii) Let 5eR and g(t) = *¥(t), te(0,1]. There exists a positive C* function h such
that h~ g and

ll(k)(l‘)
1 k—— — cee p—
}1m0 t 0 o(0—1)-(0—k+1), keN.

Before introducing the function spaces under consideration we need to recall some
notation. By ¥ we denote the Schwartz space of all complex-valued, infinitely
differentiable and rapidly decreasing functions on R” and by % the dual space of all
tempered distributions on R". Furthermore, L, with 0<p< oo, stands for the usual
quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

izl = ( [ |f<x>|1’dx)l/p,

with the obvious modification if p = . If p€.¥ then

76 = (Fo)0) = )" [ o dr, vem @
denotes the Fourier transform of ¢. As usual, % !¢ or ¢V, stands for the inverse
Fourier transform, given by the right-hand side of (4) with i in place of —i. Here x¢
denotes the scalar product in R”. Both % and ' are extended to %’ in the
standard way. Let ¢,€.% be such that

@o(x) =1 if |x|<1 and suppp,c{xeR": |x|<2}, (5)
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and for each jeN let
¢;(x) = 0o(27x) — (27 x), xeR" (6)

Then the sequence ((/)j) 7;‘0 forms a dyadic resolution of unity.

Definition 1.4. Let 0<p,¢< o0, seR and ¥ be a slowly varying function.

(i) Then B,(i,"(p) is the collection of all f € ¥ such that

© 1/4
171851l = ( > 2""‘“1”(2])qll(@jf)vlell">
=0
(with the usual modification if ¢ = o0) is finite.
(i1) Let 0<p< co. Then F,Sf,"q/) is the collection of all f' € ¥ such that

0 1/q
IAFS Ol = |[| D 2w I(ﬁojf)v(-)l") L,
J=0
(with the usual modification if ¢ = o0) is finite.

Remark 1.5. The above spaces were introduced by Edmunds and Triebel in [21,22]
and also considered by Moura [43,44] when ¥ is an admissible function. For further
basic properties, like the independence of the spaces from the chosen dyadic
resolution of unity (in the sense of equivalent norms) we refer to [23] in a more
general setting. As already mentioned in the introduction, the extensive Russian
literature can be found in the survey by Kalyabin and Lizorkin [36] and the appendix

[41]. If ¥ =1 then the spaces Bpf,’ and F,,q ) coincide with the usual Besov and
Triebel-Lizorkin spaces, B, and Fy respectively, and the following elementary
embeddings hold:

A AN a5 (7)

forall e>0and A€ {B, F}, in view of Proposition 1.3(i); see also [4, Proposition 4.6].

¥)

For convenience, we shall continue writing 4, or A,(,i; , respectively, when both B-

and F-spaces are concerned and no distinction is needed.

Example 1.6. With the particular choice of ¥, given by (3) we obtain spaces B;;f
consisting of those /€9’ for which

1/q
I/1B32]| = <Z 2(1 +)™|/(0,f)" |Ly |">
=0

is finite (usual modification for ¢ = o0); similarly for F;’;]b . These spaces were studied
by Leopold [38,39].
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For later use we also recall a special lift property for spaces B,(Jf]"lp), obtained in [8]
in case of ¥ being an admissible function and in [23] for a more general situation. Let
¥ be a slowly varying function and ((pj)jeNo a smooth dyadic partition of unity

according to (5), (6). Denote by

0

Z ql _j ()D] ’ ée IR”)
j=0

and
I = @O, fes

Proposition 1.7. Let 0<p,q< oo (with p<oo in F-case), seR, and ¥ be a

slowly wvarying function. Then JY is a topological isomorphism from AI(,Sq’W)

5
onto qu.

A proof is given in [8, Proposition 3.2] for ¥ an admissible function and in [23,
Theorem 3.1.8] for a more general situation. The essential advantage of this result is
that it enables us to gain from the wider knowledge concerning embeddings and
spaces of type 4, .

1.3. Continuity envelopes

The concept of continuity envelopes has been introduced by Haroske [30] and
Triebel [53]. Here we quote the basic definitions and results concerning continuity
envelopes. However, we shall be rather concise and we mainly refer to [30,31,53] for
heuristics, motivations and details on this subject.

Let C be the space of all complex-valued bounded uniformly continuous
functions on R", equipped with the sup-norm as usual. Recall that the
classical Lipschitz space Lip' is defined as the space of all functions feC
such that

1/ILip'|| = [I/ICl| + sup

1€(0,1)

o(f,1)

t

(8)

is finite, where w( f f) stands for the modulus of continuity,
o(f,t)=sup sup [f(x+h)—f(x)[, >0

i<t xeR"

Definition 1.8. Let X < C be some function space on R”.
(i) The continuity envelope function &% : (0, c0)— [0, 0o) is defined by
o(f,1)

Ee(t) = sup —222 1>0.
Irxj<t 1
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(ii) Assume X<Lip'. Let e€(0,1), H(t) == —log &% (1), te(0,¢], and let 1y be the
associated Borel measure. The number uy, 0 <uy < 00, is defined as the infimum
of all numbers v, 0 <v< o0, such that

o v 1/v
(/ (tg%&j;) mdz)) <ellx| )
C

(with the usual modification if v = c0) holds for some ¢>0 and all f€ X. The
couple

€e(X) = (62(),ux)

is called continuity envelope for the function space X.

As it will be useful in the sequel, we recall some properties of the continuity
envelopes. In view of (i) we obtain—strictly speaking—equivalence classes of
continuity envelope functions when working with equivalent (quasi-) norms in X as
we shall do in the sequel. However, for convenience we do not want to distinguish
between representative and equivalence class in what follows and thus stick at the
notation introduced in (i). Note that ég is equivalent to some monotonically
decreasing function; for a proof and further properties we refer to [30,31].
Concerning (ii) it is obvious that (9) holds for v = c0 and any X. Moreover, one
verifies that

vy 1/v)
g(t) _ “f g0
LA </o (5’5 (z)) ”H(dl)>
v 1/vo
[ 9@)
<cz< /0 ((%(ﬂ) uH<dz>> (10)

for 0<vy<wv; < oo and all non-negative monotonically decreasing functions g on
(0,¢]; cf. [53, Proposition 12.2, pp. 183-184]. So—passing to a monotonically
decreasing function equivalent to %, see [15, Chapter 2, Lemma 6.1, p. 43]—we
observe that the left-hand sides in (9) are monotonically ordered in v and it is natural

to look for the smallest possible one.

Proposition 1.9. (i) Let X; < C, i = 1,2, be some function spaces on R". Then X1 < X5
implies that there is some positive constant ¢ such that for all t>0,

ES ()< cEL(1).

(ii) Let X; < C, i = 1,2, be some function spaces on R" with X\ & X,. Assume for their
continuity envelope functions

(g)g](t)“'é)gz(t)v [6(0»8)7
for some ¢>0. Then we get for the corresponding indices uy,, i = 1,2, that

Uy, Suy,.
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Remark 1.10. Plainly, by (8) and Definition 1.8(i) the above assertion (i) implies that
6%( is bounded when X < Lip'; those spaces will be of no further interest for us.

2. Equivalent characterisations of Bf,i;w)

We present three different approaches to characterise Bffq’%, where the first
method—atomic decomposition—is already known [3,23,43,44]; the latter two—Dby
approximation and differences, respectively—are new.

2.1. Characterisation by atomic decompositions

An important tool in our later considerations is the characterisation of the spaces
of generalised smoothness by means of atomic decompositions. We state this here for
the B-spaces only. We refer to [43,44] for a complete description in case of ¥ being
an admissible function and to [3,23] for a more general situation. Recall that all
spaces are defined on R” unless otherwise stated.

We need some preparation. As for Z”, it stands for the lattice of all points in R”
with integer-valued components, Q,,, denotes a cube in R” with sides parallel to the
axes of coordinates, centred at 27'm = (27'my, ...,27"m,), and with side length 27",
where m = (my, ...,m,)€Z" and veNy. If Q is a cube in R” and r>0 then rQ is the
cube in R” concentric with Q and with side length » times the side length of Q.

Definition 2.1. (i) Let KeNj and ¢>1. A K times differentiable complex-valued
function «a(x) in R" (continuous if K = 0) is called an 1g-atom if

supp a=cQqy, for some meZ",
and
|D*a(x)|<1, for |o|<K.

(i) Let KeNp, L+1eNy and ¢>1. A K times differentiable complex-valued
function a(x) in R" (continuous if K = 0) is called an (s,p, ¥)x ;-atom if for some

VEN()7

9 n
suppaccQ,,,, for some meZ",

—v|s-2 v
|D*a(x)| <2 (s P>+M P2, for |u|<K,
and

/xﬁa(x)dx:O7 if |p|<L.
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If the atom a(x) is located at Q,,,, that means

suppaccQ,,, with veNy, meZ",

then we write it as a,,(x). The sequence spaces by, are defined as follows:

Definition 2.2. Let A = {1,,,€C :veNy,meZ"}, and 0<p,g< co. Then

l/q

o q/p
bpg = q % |41 bpgll = Z ( Z ;wn1|p> <

v=0 meZ"
(with the usual modification if p = oo or/and ¢ = o0).
For 0<p< oo we put g, =n(1/p—1),.

Theorem 2.3. Let KeNg and L + 1Ny with
K>(1+1s]), and L>max(-1,[o,—s])

be fixed. Then f €' belongs to B,,q if, and only if, it can be represented as
f= Z Z wm @y (X),  convergence being in &, (11)
v=0 meZ"

where J.€bp, and ayy(x) are 1g-atoms (v = 0) or (s,p, V) r-atoms (veN) according
to Definition 2.1. Furthermore

inf|| 4[]l
where the infimum is taken over all admissible representations (11), is an equivalent

(5,)
quasi-norm in By, .

This theorem coincides with [43, Theorem 1.18 (ii)] when ¥ is an admissible
function. The general case is covered by Farkas and Leopold [23, Theorem 4.4.3],
and Bricchi [3, Theorem 2.3.7(1)].

2.2. Characterisation by approximation

For each pe (0, oo] we consider the class
Uy :{a= (a,) Yoraje S 0Ly, suppa;={y: <21}, jeNo},

cf. [50, 2.5.3/(4), p. 80].
Taking advantage of Proposition 1.3(i), the proof of Theorem 2.5.3(i) in [50, p. 81]
can be appropriately modified in order to obtain the following:
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Theorem 2.4. Let 0<p,q< o0, ¥ be a slowly varying function and s> o,. Then

By {fey’ Ja = (a)Z €Uy such that [ = Jim ay in " and
o 1/4
171851l = llaol Lyl + < D 2R f — L, ||q> <o
k=1

(with the usual modification if ¢ = o0). Furthermore,
1/185;"11* = infl| 118511,

where the infimum is taken over all admissible systems a€U,, is an equivalent quasi-

s
norm in B")

2.3. Characterisation by differences

Next, we recall the definition of differences of functions. If f is an arbitrary
function on R”, 7eR" and k€N, then

k
D)) =3 (’f )(—l)k’f(x ), xeR

=0 \J
Note that Af can also be defined iteratively via
(M) (x) =f(x+h) —f(x) and (A5 f)(x) = AL(A}S)(x), keN.
For convenience we may write A, instead of A,17. Furthermore, the kth modulus of
smoothness of a function feL,, 1<p< 0, keN, is defined by
o(f,1), = sup [|ALfIL,||, 1>0. (12)

<t

We shall simply write w(f, ), instead of w(f, ), and o(f,?) instead of o(f,1),,.
Theorem 2.5. Let 0<p,g< o0, s>0,, and ¥ be a slowly varying function. If k is an
integer such that k> s, then

1/q
(s,%) (fv ) alb
e |pr|+</0 (ZW() ) ,)

(with the usual modification if ¢ = o0) is an equivalent quasi-norm in B;;‘q’).

The proof follows closely the proof of the analogous assertion when ¥ = 1 given
in [50, 2.5.12, pp. 110-112], with the appropriate modifications in view of
Proposition 1.3(i). Again, many results of the above type can be found in the
already mentioned papers by Gol’dman and Kalyabin, for instance.

In connection with this type of characterisation we refer also to [36, Theorem 8.2].



162 D.D. Haroske, S.D. Moura | Journal of Approximation Theory 128 (2004) 151-174

Example 2.6. We return to our example ¥} given by (3). Assume beR, 0<p,g< o0,
s>a,, and keN with k>s. Then

1 (f t) qd 1/q
2| Wi [, t
B~ FIL, || + / RRGACRRCY ) el

(with the usual modification if ¢ = o0 ), see Example 1.6.

3. Continuity envelopes: the main result

Recall that we shall write A5, for both BY;" and Fi5") as long as no distinction
is needed. Note that A,(fq’q/) & C for 0<p,g< oo (with p< oo in the F-case), s>§, and
¥ a slowly varying function; this follows immediately from (7) together with the
corresponding well-known results for spaces A, . Thus, by Definition 1.8, it is

reasonable to study continuity envelopes in that situation. Moreover, by an

)

analogous argument it turns out that A,g; < Lip! for s>£+ 1; according to

Remark 1.10 these spaces are not investigated further. Hence—postponing the tricky
limiting situations s = [ﬂ) and s = 147 + 1 (where the remaining indices p and ¢ have to
interplay with ¥ appropriately) to separate studies in the future—we are left to

consider spaces A,Si;"’) with 2<s<2+ 1. Our result is the following.

Theorem 3.1. Let 0<p,q< oo (with p< oo in the F-case), 0<o<1,s :[ﬂ)—k g, and ¥
be a slowly varying function. Then:

() €c(By")
(i) €o(Fly")

(=)~ g);
(w07 p).

Proof. The proof follows the one of Haroske [31, Theorem 6.2.1] for 4; (¥ = 1),

with the appropriate modifications.
Step 1: We show

B(JJI’J

s ()<er ()T, 1e(0,1); (13)
as the elementary embedding
(s.%) ., glo.¥ _n

B L>Bo’éq), s-p—f—a, O<p< oo, 0<g< 0, (14)

(consequence of Proposition 1.7 and the corresponding well-known assertion for
¥ = 1), then implies

B Ll .
et (<t w7 1e(0,1),
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in view of Proposition 1.9(i). Recall that by Theorem 2.5 (where we can choose

k = 1>0 now)
Yot \ 4}
+</0 (ﬂ“P(z)‘1> Z) . (15)

Letfequ with Hf\B || < 1. Then by (15) and the fact that <{ A s equivalent to
a monotonically decredsmg function, see [15, Chapter 2, Lemma 6.1, p. 43] or [31,
Proposition 4.3.3(i)], we obtain for any 7€ (0, 1),

T / T a l/q
wta(f o)< [ (2]

<allf1BEY <. (16)

1/ 1B 1 ~[1.f 1 Ler

Taking into account Proposition 1.3(ii), for >0 there is a decreasing function /4 such
that +~° ¥Y(¢) ~h(t), t (0, 1]. Then the left-hand side of (16) can be further estimated
from below by

T 1/
| (U(f7 T) /’l(f) </ t(l+efa)q71 dZ) (12 s w(fv T) h(f) _L_lJ,»gfo'
0

T T
> ¢3 Mrlﬂf (1),
T
leading to
o(f,1) ) —(1-0) -1
7y
i @7,

for allfeB(oZ’;]I) with ||f|B(OZ’;I)|| <1, and hence (13).
Step 2: We verify

(5.%)
2 (=cr 1w 1e(0,27], (17)

and adapt the corresponding proof in [31, Theorem 6.2.1] appropriately. For that
reason recall the atomic decomposition of spaces B,(,f]’lp) given in Theorem 2.3.
According to this we know that functions

i) =277 (27) o(Zx), jeN,
are atoms in Bf,ﬁ;w) (no moment conditions needed), where ¢ is a compactly
supported C* function, thought as a mollified version of

0, |x=1,
o(x) = xeR".
o0 ={1_ 1, e

Then clearly

.
t €
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and hence
L09’t)~2f‘<‘—“>slrf(2—f)‘1, t~27, jeN.

Moreover, ||f,|qu || ~ 1. Consequently, we arrive at

) .27 . )
62 (22 X2 0w, e,

and this leads to (17) finally, since ¥(¢)~¥(27), te[2-0*1,27], jeN, due to
Proposition 1.3(1).

Step 3: For simplicity, we shall write up instead of uy when X = B;;ZW) in the
sequel. We first prove up<q. In view of our results in the preceding steps together
with (14) and another application of Proposition 1.9(ii) it is sufficient to prove uy <g¢

for X = B(jé';,‘y ). But this follows immediately from (15) and the already established
equivalence

(0,')
s ()~ w7 re(0,1),

granted that u, from Definition 1.8(ii) behaves like
p (de) ~—. (18)

Note that by Proposition 1.3(iii), there exists a positive C* function / such that
h(t)~t'=°%(¢) in (0, 1] and

Therefore, £ is increasing in some neighbourhood (0, ¢] of the origin with
W) 1

w7 €0 (19)

and, moreover, by Steps 1 and 2,

)
Wty '~ P e 8 (1), 1€(0,4).

In view of Definition 1. 8(ii) we then obtain
H(t) = —log 6% (1) ~log (1), 1€(0,2],

and (19) yields (18).
Step 4: In case of the B-spaces it remains to derive from

</Sam”dr
0

1/v
= Bs:¥) 20
W) z) ellf1B5" I (20)
for some ¢>0 and all feB,(,i,’W) that v>¢; recall (9) and (18). We make use of a
suitable combination of our extremal functions f; from Step 2, see the corresponding
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proof in [31, Theorem 6.2.1]. Put

()= 6277027 e(Zx—¥), xeR,
J=1

where ¢ is as above, b; >0, jeN, (bj)jeNe/q, and the )/ are chosen such that the
supports of @(2-—)/) and ¢(2%- —y*) are disjoint for j#k, j,keN. Then by
Theorem 2.3 / belongs to BYy" with

17185 1< el . (21)
Let JeN be such that 27/ ~¢ for ¢ given by (20). For simplicity, we may assume
bj=0,j=1,...,J — 1. By our assumptions,

o(f,27)=b 27 P2 w(p(2 - —y),27) = ch 27w (27) !
and consequently, involving (20), (21) and b; = 0, j<J, additionally,

1/v ) . o\ 1/v v 1/v
o | o(f,27) flo(f,0) | dt
(59) =(lse]) -UEen)s)

—
= =7 (1)
- 1/q
< all /1857 || < eallblty ]|~ < b}’)

=

from whence we conclude v>¢. Thus part (i) of the theorem is proved.

Step 5: Let so>s>0 and 59 — pio = —ﬁ = 0. As a consequence of Proposition 1.7
and the embedding assertion in e.g. [52, 11.4, p. 55] it holds

)

Then, due to Proposition 1.9, (ii) is a consequence of (i). [
Remark 3.2. When ¥ = 1, Theorem 3.1 coincides with [31, Theorem 6.2.1].

Example 3.3. Using our particular choice ¥} given by (3), Theorem 3.1 reads as

Cc(Byy) = (" [log ", q),

and
Co(F3h) = (1" log 1|, p),

where beR, 0<p,g< oo (with p< oo in the F-case), 0<o<1 and s:lﬂ)+o.

As a first application we can conclude some Hardy-type inequalities. This follows
immediately from our above assertions together with the monotonicity (10), see [53,
Proposition 12.2, pp. 183—184], and the fact that

#0) olf0)_

>0 6g(n)
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holds for some ¢>0 and all feX, || f|X]||<]1, if, and only if, % is bounded, see [31,
Proposition 4.3.3(iv)].

Corollary 3.4. Let p, q, s, 0 and ¥ as in Theorem 3.1.

(i) Let »(t) be a positive monotonically decreasing function on (0,¢] and let 0<u< co.
Then

€ 1/u
([ corwwotrr ) <dinsg
0

for some ¢>0 and all f € B}i}lp) if, and only if, » is bounded and g <u< oo, with the
modification
sup. w0 (Do (f, )<l 185 (22)
te(0,e
if u= co. In particular, if » is an arbitrary non-negative function on (0,¢, then
(22) holds if, and only if, » is bounded.

(i) Let (1) be a positive monotonically decreasing function on (0, ] and let 0 <u< 0.
Then

e 1/u
( | coreworr, z>>“$) <dIAIEEY|

for some ¢>0 and allfeF,S;’qj) if, and only if, v is bounded and p <u< oo, with the
modification
sup x()1 " (o (f, 1) <c||fE5"|l (23)
te(0,8)
if u= co. In particular, if » is an arbitrary non-negative function on (0,¢, then
(23) holds if, and only if, « is bounded.

4. Entropy and approximation numbers

We study compact embeddings of function spaces of generalised smoothness and
qualify their compactness further by means of entropy numbers and approximation
numbers, respectively; here we shall essentially gain from our above envelope results.
First, we briefly recall these concepts.

Let A; and A, be two complex (quasi-) Banach spaces and let T be a linear and
continuous operator from A4, into A4,. If T is compact then for any given ¢>0 there
are finitely many balls in A, of radius ¢ which cover the image 7'(Uy, ) of the unit ball
UAI = {aeAl : ||a|A1||< 1}

Definition 4.1. Let keN and let T : 4 —> A, be the above continuous operator.

(i) The kth entropy number e, of T is the infimum of all numbers ¢>0 such that
there exist 2¥~! balls in A, of radius ¢ which cover T(Uy,).
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(ii) The kth approximation number a; of T is the infimum of all numbers ||T — S]|
where S runs through the collection of all continuous linear maps from 4; to 4,
with rank S <k,

ap(T) =inf{||T — S|| : Se # (A4, 4;),rank S<k}.

For details and properties of entropy and approximation numbers we refer to
[11,16,37,48] (restricted to the case of Banach spaces), and [20] for some extensions
to quasi-Banach spaces. Obviously, entropy numbers ‘measure’ the compactness of
operators in geometrical terms whereas approximation numbers characterise it by
approximation with finite-rank operators.

Remark 4.2. A strong motivation to study entropy numbers as well as approxima-
tion numbers comes from spectral theory, in particular, the investigation of
eigenvalues of compact operators. Though these consequences are out of the scope
of the present paper, we briefly recall some ideas. Let 4 be a complex (quasi-)
Banach space and T € #(4) compact. Then the spectrum of T (apart from the point
0) consists only of eigenvalues of finite algebraic multiplicity, {g (T)},cn, ordered as
usual | (T)|=|u,(T)|=--- =0. Carl’s inequality gives an excellent link between
entropy numbers and eigenvalues of T

‘ 1/k )
( 11 |um<T>|> < inf Ze,(T), keN, (24)
=1 ne

in particular,
e (T)| < V2ex(T). (25)

This result was originally proved by Carl [10] and Carl and Triebel [12] when 4 is a
Banach space. An extension to quasi-Banach spaces can be found in [20, Theorem
1.3.4, p. 18]. Conversely, we may also gain from the study of approximation numbers
when dealing with eigenvalue estimates, where it is reasonable to concentrate on the
Hilbert space setting first. Let s be a complex Hilbert space and T e % (H#)
compact, the non-zero eigenvalues of which are denoted by {u, (7')}, . again; then
T*T has a non-negative, self-adjoint, compact square root |T|, and for all ke N,

ar(T) = p(IT1), (26)

see [16, Theorem I1.5.10, p. 91]. Hence, if in addition 7T is non-negative and self-
adjoint, then the approximation numbers of 7" coincide with its eigenvalues. Outside
Hilbert spaces the results are less good but still very interesting, cf. [11,16,37,48] for
further details.

The interplay between continuity envelopes and approximation numbers relies on
the following outcome.
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Proposition 4.3. Let X be some Banach space defined on the unit ball U in R" with
X(U)<s C(U). Then there is some ¢>0 such that for all ke N,

a(id : X(U) > C(U)) < ck X (k). (27)

This result can be found in [7]; it is essentially based on an estimate obtained by
Carl and Stephani [11, Theorem 5.6.1, p. 178].
We return to the function spaces studied above. Note that there cannot be a

compact embedding between spaces on R”; the counterpart for spaces A,(,f;qj)([R”)
follows immediately from the well-known fact for spaces A;q(R”) and (7). Let U be

the unit ball in R"; we deal with spaces AI,(,A,;W)(U ) now defined by restriction from
their R"-counterparts. Checking the argument in our proof one immediately verifies

that Theorem 3.1 can be transferred to spaces on domains without any difficulty, i.e.

we have for the local continuity envelopes Gc(d%” (U)) = Gc(Al" (RY)).

Combining (the counterpart of) Theorem 3.1 with (27) immediately leads to the
upper estimate in the following proposition.

Proposition 4.4. Let 2<p< oo (with p<oo in the F-case), 0<q< oo, seR with
S<s<i+ 1, and ¥ be a slowly varying function. Then

syl 1
ai(id : BS;"(U)—> C(U))~k " 2P (kn)™", keN. (28)
The same is true with B" (U) replaced by F3")(U).

Proof. Note that the restriction p>2 is due to the lower estimate; it is, however, to
expect, in view of related situations, say, when ¥ = 1; see Remark 4.6.

Step 1: The upper estimate in (28) is a direct consequence of Theorem 3.1 and (27).
Note that the difficulty with 0<p,g<1, when the spaces B,(,“;;%(U ) are not Banach
spaces and hence Proposition 4.3 cannot be applied directly, can easily be
surmounted by a continuous embedding argument B;?W)(U)L»Bf,;’w)(U), where
p<l<r,s—t=o0-1 4= max(g, 1), in view of the multiplicativity of approxima-
tion numbers.

Step 2: For the estimate from below we make use of the special lift property
Proposition 1.7 together with related results for ¥ = 1. Let ueR be such that
0<p<1. Then by the multiplicativity of approximation numbers,

ax(id : BS;" (U)—» B LY(U))
<ai(id : BSY(U) - C(U))ay (id - C(U) - BRI (U)).

Pq
It is thus sufficient to show that

ostp 1
ax(id : B (U)» B (U) zak 7 7, (29)
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for 2<p< o0, and

L 1
ar(id : C(U)—BCED(U)) < ek n (k2> (30)

in order to verify the estimate from below. In the spirit of Proposition 1.7 we can
simplify (29) by

ax(id : B;QW(U)ﬁng%(U)) ~ay(id : B, (U)— B, (U)),

the rest being a consequence of the well-known result [20, Theorem 3.3.4, p. 119] for
¥ =1, see also (32) below. For the required extension operators we refer to [35,41];
see also the survey article [36]. These papers cover more general settings, too; we
proceed by extension and restriction in the usual way. Concerning (30),
C(U)s B, (U) leads to

ar(id : C(U)—BURY(U))<car(id - B’ (U)— BURY(U)).

The usual lift operator

Lf =1+ PPN fed', (31
maps A;,Sq‘% isomorphically onto A,(,ifa’%, cf. [3, Proposition 2.2.19]; here we use

again a result on R", but it can be adapted to our setting in the above-described way.
Thus this lifting argument together with another application of Proposition 1.7 and
C(U)s B, (U) provide
ar(id : B, (U)— B4 (U)
<cia(id : B, ,(U)—BY")(U))

<cya(id : B»Y N(U) - B°,  (U))

<csa(id : BRY (U > C(U))

N ! 1
4 <kn) =4k n¥W <kn) ,

where we finally applied Step 1. This yields (30) and finishes the proof. [

_K
<cgk

Remark 4.5. Following the above proof it is clear that the target space C(U) can be
replaced by B&ym(U) without any difficulty. When ¥ is an admissible function,

taking the special features of admissible functions into account—cf. [8, Lemma
2.3(ii)]—, we could simplify (28) by

s, 1
ai(id : BS;"(U) > C(U))~k " 7P(k™")", keN,

thus hiding the influence of the underlying measure space R" equipped with the
Lebesgue measure 7.
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Remark 4.6. When ¥ =1, the situation is well-known apart from some limiting
cases: let 0<p,g< oo (with p< oo in the F-case), s>§, then for all keN,

,(iil>
knmr, 2<p< 0,

a(id : B, (U)> CUN~S 16T | <ped. s<n (32)

s_1
k_(n_2>7 l<p<2, s>n,

where p' is given by ; +; =1, 1<p< o0, as usual; cf. [6,20, Theorem 3.3.4, p. 119].
In particular, (28) coincides with the first line of (32) for ¥ = 1. Moreover, (32) also
suggests that for p<2 the upper estimate obtained in Step 1 of the proof of
Proposition 4.4 for all 0 <p< oo (i.e. also for 0 <p < 2) is certainly not asymptotically
sharp; it differs for p<2 and p>=2. This phenomenon is well-known for
approximation numbers.

Dealing with entropy numbers instead, sharp asymptotic estimates in case of
¥ =1 are completely covered by [20, Theorem 3.3.3/2, p. 118],

ex(id : By, (U)— C(U) ~kn, (33)

where 0<p,¢< oo and seR with §>7.

Corollary 4.7. Let 2<p< oo (with p< oo in the F-case), 0<g< o0, s1,5€R with
lﬂ,<s1 — 85 <1ﬂ) + 1, a;,a2€eR and ¥V be a slowly varying function. Then for all ke N,

S1=s 1

a a —_ — l
ar(id : BV (U) - B (U)) ~k n W (kn) 2, (34)

pq % 0

The same is true with B;‘;"w)(U) replaced by F,S';"WI)(U).

Proof. Note that for a slowly varying function ¥ any function ¥, aeR, is slowly

varying, too. Then the assertion is an immediate consequence of Propositions 4.4,

1.7, Remark 4.5 and an application of the lift operator I, from (31) mapping A,(]fl‘m

isomorphically onto A,(fq*a’q/), cf. [3, Proposition 2.2.19; 50, Theorem 2.3.8, p. 58] for
¥Y=l,
a(id : BT (U) > B /(U))
_s51=%

~ag(id : By =" (U) > B, (U))~K
for keN. 0O

L1 1

P (kn) e

Example 4.8. We return to our particular choice ¥, given by (3), in particular, with
a; = by, ay = by. Then (34) reads as
51—

Si=$2, 1
ar(id : B (U)— B2 (U)~k » 2(1+logh)™™, keN,

Pq

where 2<p< 0, 0<g< o0, lﬂ)<s1 —sz<;—;—|— 1, and by, b, eR.



D.D. Haroske, S.D. Moura | Journal of Approximation Theory 128 (2004) 151-174 171

Using a rather rough general estimate between entropy and approximation
numbers we can reformulate Proposition 4.4 in terms of entropy numbers.

Corollary 4.9. Let 0<p,g< oo (with p< oo in the F-case), s1,5€R with §<s1 —
52 <£+ 1, ai,a2€R, and ¥ be a slowly varying function. Then there are numbers
¢y >c1 >0 such that for all ke N,

1—52

N 2 1 a o ap
ak™ m W(km) ™" < e(id : By (U) —» B (U))

s1—s2 1

<ok n PW(kTH )“2 a (35)

The same is true with B,(,‘i}"wl)( U) replaced by F,,YI W)(U).

Proof. For the upper estimate we combine (34) and the following: Let T € ¥ (A4, 4>)
be a compact operator between quasi-Banach spaces 41, 4,. Assume that there is
some ¢’ >0 with ay-1(T)<cay(T) for all jeN. Then

ex(T)<ca(T)

for some ¢>0 and all ke N. Details can be found in [51]; there is a forerunner in [11,
p. 96] restricted to Banach spaces. The extension to p <2—comparing Corollaries 4.9
and 4.7—is covered by embedding arguments again or directly by Step 1 of the proof
of Proposition 4.4.

The lower estimate is obtained in exactly the same way as in Step 2 of the proof of
Proposition 4.4 with the only modification that (29) has to be replaced by
() =k~ n (36)

ex(id - BEV(U)— B 1Y
valid for all 0 <p < o0, see [20, Theorem 3.3.3/2, p. 118] and (33). The rest is lifting. [

Pq 0

Remark 4.10. Comparison with the situation ¥ = 1 recalled in (33) suggests that the
upper estimate in (35) is not sharp apart from the case p = oo. Moreover, this
assumption is supported by Leopold’s results on entropy numbers and approxima-
tion numbers in spaces of generalised smoothness; concerning approximation
numbers he obtained a sequence space result similar to Proposition 4.4 in [40,
Corollary 1] with a (function space) forerunner in [38, Remark 4]. As far as we know
there are no further results in this direction. Similarly, in the context of entropy
numbers, Leopold proved in [40, Theorems 3,4] (with forerunners in [38,39]) sharp
asymptotic estimates, using (sub-) atomic decomposition techniques and sequence
space assertions. For instance, with ¥, given by (3), [39, Theorem 3] states that

e(id : BYP(U)> B2 (U)~k~ 7 (1+1logh) ™, keN,

where 0<p,g< 00, s —sz>" and heR.

Further entropy and approximation number results (related to the case s; — s, =
bt 1, which is out of the scope of the present paper) can also be found in
[14,17,18,38,39].
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Finally, entropy numbers for embeddings of spaces of generalised smoothness
were already studied in [43, Theorem 3.13], but in the context of spaces defined on
(fractal) (d, ¥)-sets.
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