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Abstract

We study continuity envelopes in spaces of generalised smoothness B
ðs;CÞ
pq and F

ðs;CÞ
pq and give

some new characterisations for spaces B
ðs;CÞ
pq : The results are applied to obtain sharp

asymptotic estimates for approximation numbers of compact embeddings of type id :

B
ðs1;CÞ
pq ðUÞ-Bs2

NN
ðUÞ; where n

p
os1 � s2on

p
þ 1 and U stands for the unit ball in Rn: In case of

entropy numbers we can prove two-sided estimates.
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0. Introduction

Spaces of generalised smoothness have already been studied for long from
different points of view, coming from the interpolation side (with a function
parameter), see the results by Merucci [42] and Cobos and Fernandez [13], whereas
the rather abstract approach (approximation by series of entire analytic functions
and coverings) was independently developed by Gol’dman and Kalyabin, see [24–
28,32,33]. Furthermore, the survey by Kalyabin and Lizorkin [36] and the appendix
[41] cover the extensive (Russian) literature at that time. More recently, we mention
the contributions of Gol’dman [27,28], Netrusov [45] and Burenkov [5]. The notion
was revived and extended in the way we shall use it in connection with limiting

embeddings and spaces on fractals by Edmunds and Triebel [21,22], Leopold [38,39]
and Moura [43,44]. Closely linked, but slightly different is the approach to more
general Lipschitz spaces as developed by Edmunds and Haroske [17,18,29]. The
present state of the art is reviewed and covered in [23] by Farkas and Leopold linking
function spaces of generalised smoothness with negative definite functions—and thus
referring to applications for pseudo-differential operators (as generators of sub-
Markovian semi-groups). Plainly, these latter applications and also the topic in its
full generality are out of the scope of the present paper; it explains, however, the
increased interest on function spaces of generalised smoothness quite recently. As a

prototype one can think of spaces of Besov type B
ðs;CÞ
p;q ðRnÞ; where the function C

might behave like CðxÞ ¼ ð1þ jlog xjÞb; xAð0; 1�; bAR; for example, we have for
1oppN; 0oqpN; 0oso1; an easy characterisation by differences,

jj f jBðs;CÞ
pq jjBjj f jLpjj þ

Z 1

0

t�sCðtÞ sup
jhjpt

jj f ð	 þ hÞ � f ð	ÞjLpjj
" #q

dt

t

 !1=q

(with the usual modification if q ¼ NÞ:
In contrast to the above-described long history and variety of contributions

devoted to spaces of generalised smoothness, continuity envelopes represent a very
new tool for the characterisation of function spaces, developed only recently in
[30,31,53]. Nevertheless, it promises by now already not only surprisingly sharp
results based on classical concepts, but also a lot of applications, e.g. to the study of
compact embeddings. We return to this point later. Roughly speaking, a continuity
envelope ECðX Þ of a function space X consists of a so-called continuity envelope
function

EX
C ðtÞB sup

jj f jX jjp1

oð f ; tÞ
t

; t40;

together with some fine index uX ; here oð f ; tÞ stands for the modulus of continuity,
as usual. Forerunners of continuity envelopes in a wider sense are well-known for
decades; among the big amount of work devoted to the study of limiting or sharp

embeddings involving spaces that contain (at least) continuous functions we only
want to mention a few: dealing with spaces of type Bs

pq; F s
pq we refer to the result of

Sickel and Triebel [49, Theorem 3.3.1] (also for further historical comments), the
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paper [34] by Kalyabin concerns the question of embeddings into C in the special
context of spaces of generalised smoothness mentioned above, whereas the famous
result [2] of Brézis and Wainger can be regarded as some origin of the idea of

continuity envelopes at all. It states that some function uAH
1þn=p
p ðRnÞ; 1opoN; is

‘almost’ Lipschitz-continuous in the sense that for all x; yARn; 0ojx � yjo1
2
;

juðxÞ � uðyÞjpcjx � yjjlogjx � yjj1=p0 jjujH1þn=p
p ðRnÞjj: ð1Þ

Here c is a constant independent of x; y and u; and 1
p0 þ 1

p
¼ 1: We studied the

sharpness of this assertion and parallel questions for more general spaces in [17,18].
These considerations led us finally to the introduction of continuity envelopes:
obviously (1) results after some reformulation in

E
H

1þn=p
p

C ðtÞpcjlog tj1=p0 ; 0oto1
2
:

Turning to spaces defined on bounded domains, say, the unit ball UCRn for

simplicity, it is reasonable to consider compact embedding operators, id :

B
ðs;CÞ
pq ðUÞ-CðUÞ; where C stands for the space of complex-valued bounded

uniformly continuous functions. More precisely, we shall further inquire into the
nature of this compactness and characterise the asymptotic behaviour of the
corresponding approximation numbers; we prove

akðid : Bðs;CÞ
pq ðUÞ-CðUÞÞBk

�s
n
þ1

pCðk�1
nÞ�1; kAN;

assuming that 2pppN; 0oqpN; sAR with n
p
oson

p
þ 1; and C as above. Studying

entropy numbers instead of approximation numbers in the same context, we obtain
two-sided estimates of the same type.

Let us finally mention that parallel studies, when questions of (Lipschitz-)
continuity are replaced by inquiries about the unboundedness of functions, led to the
concept of growth envelopes in [30,31,53] and were continued by Bricchi, Caetano,
Haroske and Moura in different settings, cf. [4,7–9].

The paper is organised as follows. We collect the necessary background material in
Section 1; in Section 2 we obtain different equivalent characterisations for spaces

B
ðs;CÞ
pq : This is not only needed afterwards, but also of some interest of its own. Our

main result on continuity envelopes in spaces of generalised smoothness can be
found in Section 3. Section 4 contains entropy and approximation number estimates
representing both an application of our envelope assertions, and the starting point
for further possible applications in spectral theory; however, this is out of the scope
of the present paper. We shall only give a brief account on the consequences we have
in mind.
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1. Preliminaries

1.1. General notation

As usual, Rn denotes the n-dimensional real Euclidean space, N the collection of
all natural numbers and N0 ¼ N,f0g: We use the equivalence ‘‘B’’ in

akBbk or jðxÞBcðxÞ

always to mean that there are two positive numbers c1 and c2 such that

c1akpbkpc2ak or c1jðxÞpcðxÞpc2jðxÞ

for all admitted values of the discrete variable k or the continuous variable x; where
ðakÞk; ðbkÞk are non-negative sequences and j; c are non-negative functions. If aAR

then aþ :¼ maxða; 0Þ and ½a� denotes the integer part of a:
Given two quasi-Banach spaces X and Y ; we write X+Y if XCY and the

natural embedding of X in Y is continuous.
All unimportant positive constants will be denoted by c; occasionally with

additional subscripts within the same formula. If not otherwise indicated, log is
always taken with respect to base 2.

Apart from the last section we shall always deal with function spaces on Rn; so for
convenience we shall usually omit the ‘‘Rn’’ from their notation.

1.2. Function spaces of generalised smoothness

Recall our introductory remarks on spaces of generalised smoothness, relating this
topic with some historical background as well as the present state of the art. In our
context, we shall be concerned with function spaces of generalised smoothness of
Besov and Triebel–Lizorkin type, where the usual main smoothness parameter s is
replaced by a couple ðs;CÞ and C is a slowly varying function (in Karamata’s sense).

Definition 1.1. A positive and measurable function C defined on the interval ð0; 1� is
said to be slowly varying if

lim
t-0

CðstÞ
CðtÞ ¼ 1; sAð0; 1�: ð2Þ

Example 1.2. Any function of the form

CðtÞ ¼ exp �
Z 1

t

eðsÞds

s

� �
; tAð0; 1�;

where e is a measurable function with lims-0 eðsÞ ¼ 0; is slowly varying (actually this
is a characterisation: any slowly varying function is equivalent to a function C of the
above type for an appropriate function e); in particular,

CbðxÞ ¼ ð1þ jlog xjÞb; xAð0; 1�; bAR; ð3Þ
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is slowly varying; we return to this particular choice in the sequel for illustration. We
remark that Cb is also an example of an admissible function in the sense of [21,22].
We recall that an admissible function C is a positive monotone function defined on

ð0; 1� such that Cð2�2jÞBCð2�jÞ; jAN: An admissible function is, up to equivalence,
a slowly varying function (cf. Proposition 1.9.7 of [3]).

The proposition below gives some properties of slowly varying functions that will
be useful in what follows. We refer to the monograph [1] for details and further
properties; see also [19,54, Chapter V], and, quite recently, [46,47].

Proposition 1.3. Let C be a slowly varying function.

(i) For any d40 there exists c ¼ cðdÞ41 such that

1

c
sdp

CðstÞ
CðtÞpcs�d; t; sAð0; 1�:

(ii) For each a40 there is a decreasing function f and an increasing function j with

t�aCðtÞBfðtÞ and taCðtÞBjðtÞ:

(iii) Let dAR and gðtÞ ¼ tdCðtÞ; tAð0; 1�: There exists a positive CN function h such

that hBg and

lim
t-0

tk hðkÞðtÞ
hðtÞ ¼ dðd� 1Þ?ðd� k þ 1Þ; kAN:

Before introducing the function spaces under consideration we need to recall some
notation. By S we denote the Schwartz space of all complex-valued, infinitely
differentiable and rapidly decreasing functions on Rn and by S0 the dual space of all
tempered distributions on Rn: Furthermore, Lp with 0oppN; stands for the usual

quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

jj f jLpjj :¼
Z
Rn

j f ðxÞjpdx

� 	1=p

;

with the obvious modification if p ¼ N: If jAS then

bjjðxÞ � ðFjÞðxÞ :¼ ð2pÞ�n=2

Z
Rn

e�ixxjðxÞ dx; xARn; ð4Þ

denotes the Fourier transform of j: As usual, F�1j or j3; stands for the inverse
Fourier transform, given by the right-hand side of (4) with i in place of �i: Here xx
denotes the scalar product in Rn: Both F and F�1 are extended to S0 in the
standard way. Let j0AS be such that

j0ðxÞ ¼ 1 if jxjp1 and suppj0CfxARn : jxjp2g; ð5Þ
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and for each jAN let

jjðxÞ :¼ j0ð2�jxÞ � j0ð2�jþ1xÞ; xARn: ð6Þ

Then the sequence ðjjÞ
N

j¼0 forms a dyadic resolution of unity.

Definition 1.4. Let 0op; qpN; sAR and C be a slowly varying function.

(i) Then B
ðs;CÞ
pq is the collection of all fAS0 such that

jj f jBðs;CÞ
pq jj :¼

XN
j¼0

2jsqCð2�jÞqjjðjj
bff Þ3jLpjjq

 !1=q

(with the usual modification if q ¼ NÞ is finite.

(ii) Let 0opoN: Then F
ðs;CÞ
pq is the collection of all fAS0 such that

jj f jF ðs;CÞ
pq jj :¼

XN
j¼0

2jsq Cð2�jÞq jðjj
bff Þ3ð	Þjq!1=q

0@ ������ Lp

������
������

������
������

(with the usual modification if q ¼ NÞ is finite.

Remark 1.5. The above spaces were introduced by Edmunds and Triebel in [21,22]
and also considered by Moura [43,44] when C is an admissible function. For further
basic properties, like the independence of the spaces from the chosen dyadic
resolution of unity (in the sense of equivalent norms) we refer to [23] in a more
general setting. As already mentioned in the introduction, the extensive Russian
literature can be found in the survey by Kalyabin and Lizorkin [36] and the appendix

[41]. If C � 1 then the spaces B
ðs;CÞ
pq and F

ðs;CÞ
pq coincide with the usual Besov and

Triebel–Lizorkin spaces, Bs
pq and F s

pq; respectively, and the following elementary

embeddings hold:

Asþe
pq +Aðs;CÞ

pq +As�e
pq ; ð7Þ

for all e40 and AAfB;Fg; in view of Proposition 1.3(i); see also [4, Proposition 4.6].

For convenience, we shall continue writing As
pq or A

ðs;CÞ
pq ; respectively, when both B-

and F -spaces are concerned and no distinction is needed.

Example 1.6. With the particular choice of Cb given by (3) we obtain spaces Bs;b
pq

consisting of those fAS0 for which

jj f jBs;b
pq jj ¼

XN
j¼0

2jsqð1þ jÞbqjjðjj
bff Þ3jLpjjq

 !1=q

is finite (usual modification for q ¼ N); similarly for Fs;b
pq : These spaces were studied

by Leopold [38,39].
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For later use we also recall a special lift property for spaces B
ðs;CÞ
pq ; obtained in [8]

in case of C being an admissible function and in [23] for a more general situation. Let
C be a slowly varying function and ðjjÞjAN0

a smooth dyadic partition of unity

according to (5), (6). Denote by

eCCðxÞ ¼
XN
j¼0

Cð2�jÞjjðxÞ; xARn;

and

J
eCCf :¼ ðeCCð	Þ bff Þ3; fAS0:

Proposition 1.7. Let 0op; qpN (with poN in F -case), sAR; and C be a

slowly varying function. Then J
eCC is a topological isomorphism from A

ðs;CÞ
pq

onto As
pq:

A proof is given in [8, Proposition 3.2] for C an admissible function and in [23,
Theorem 3.1.8] for a more general situation. The essential advantage of this result is
that it enables us to gain from the wider knowledge concerning embeddings and
spaces of type As

p;q:

1.3. Continuity envelopes

The concept of continuity envelopes has been introduced by Haroske [30] and
Triebel [53]. Here we quote the basic definitions and results concerning continuity
envelopes. However, we shall be rather concise and we mainly refer to [30,31,53] for
heuristics, motivations and details on this subject.

Let C be the space of all complex-valued bounded uniformly continuous
functions on Rn; equipped with the sup-norm as usual. Recall that the

classical Lipschitz space Lip1 is defined as the space of all functions fAC

such that

jj f jLip1jj ¼ jj f jCjj þ sup
tAð0;1Þ

oð f ; tÞ
t

ð8Þ

is finite, where oð f ; tÞ stands for the modulus of continuity,

oð f ; tÞ ¼ sup
jhjpt

sup
xARn

j f ðx þ hÞ � f ðxÞj; t40:

Definition 1.8. Let X+C be some function space on Rn:

(i) The continuity envelope function EX
C : ð0;NÞ-½0;NÞ is defined by

EX
C ðtÞ :¼ sup

jj f jX jjp1

oð f ; tÞ
t

; t40:

ARTICLE IN PRESS
D.D. Haroske, S.D. Moura / Journal of Approximation Theory 128 (2004) 151–174 157



(ii) Assume X =+Lip1: Let eAð0; 1Þ; HðtÞ :¼ �log EX
C ðtÞ; tAð0; e�; and let mH be the

associated Borel measure. The number uX ; 0ouXpN; is defined as the infimum
of all numbers v; 0ovpN; such thatZ e

0

oð f ; tÞ
tEX

C ðtÞ

 !v

mHðdtÞ
 !1=v

pcjj f jX jj ð9Þ

(with the usual modification if v ¼ NÞ holds for some c40 and all fAX : The
couple

ECðXÞ ¼ ðEX
C ð	Þ; uX Þ

is called continuity envelope for the function space X :

As it will be useful in the sequel, we recall some properties of the continuity
envelopes. In view of (i) we obtain—strictly speaking—equivalence classes of
continuity envelope functions when working with equivalent (quasi-) norms in X as
we shall do in the sequel. However, for convenience we do not want to distinguish
between representative and equivalence class in what follows and thus stick at the

notation introduced in (i). Note that EX
C is equivalent to some monotonically

decreasing function; for a proof and further properties we refer to [30,31].
Concerning (ii) it is obvious that (9) holds for v ¼ N and any X : Moreover, one
verifies that

sup
0otpe

gðtÞ
EX

C ðtÞ
p c1

Z e

0

gðtÞ
EX

C ðtÞ

 !v1

mHðdtÞ
 !1=v1

p c2

Z e

0

gðtÞ
EX

C ðtÞ

 !v0

mHðdtÞ
 !1=v0

ð10Þ

for 0ov0ov1oN and all non-negative monotonically decreasing functions g on
ð0; e�; cf. [53, Proposition 12.2, pp. 183–184]. So—passing to a monotonically

decreasing function equivalent to oð f ;tÞ
t

; see [15, Chapter 2, Lemma 6.1, p. 43]—we

observe that the left-hand sides in (9) are monotonically ordered in v and it is natural
to look for the smallest possible one.

Proposition 1.9. (i) Let Xi+C; i ¼ 1; 2; be some function spaces on Rn: Then X1+X2

implies that there is some positive constant c such that for all t40;

EX1

C ðtÞpcEX2

C ðtÞ:

(ii) Let Xi+C; i ¼ 1; 2; be some function spaces on Rn with X1+X2: Assume for their

continuity envelope functions

EX1

C ðtÞBEX2

C ðtÞ; tAð0; eÞ;

for some e40: Then we get for the corresponding indices uXi
; i ¼ 1; 2; that

uX1
puX2

:
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Remark 1.10. Plainly, by (8) and Definition 1.8(i) the above assertion (i) implies that

EX
C is bounded when X+Lip1; those spaces will be of no further interest for us.

2. Equivalent characterisations of B
ðs;WÞ
pq

We present three different approaches to characterise B
ðs;CÞ
pq ; where the first

method—atomic decomposition—is already known [3,23,43,44]; the latter two—by
approximation and differences, respectively—are new.

2.1. Characterisation by atomic decompositions

An important tool in our later considerations is the characterisation of the spaces
of generalised smoothness by means of atomic decompositions. We state this here for
the B-spaces only. We refer to [43,44] for a complete description in case of C being
an admissible function and to [3,23] for a more general situation. Recall that all
spaces are defined on Rn unless otherwise stated.

We need some preparation. As for Zn; it stands for the lattice of all points in Rn

with integer-valued components, Qnm denotes a cube in Rn with sides parallel to the
axes of coordinates, centred at 2�nm ¼ ð2�nm1;y; 2�nmnÞ; and with side length 2�n;
where m ¼ ðm1;y;mnÞAZn and nAN0: If Q is a cube in Rn and r40 then rQ is the
cube in Rn concentric with Q and with side length r times the side length of Q:

Definition 2.1. (i) Let KAN0 and c41: A K times differentiable complex-valued
function aðxÞ in Rn (continuous if K ¼ 0) is called an 1K -atom if

supp aCcQ0m; for some mAZn;

and

jDaaðxÞjp1; for jajpK :

(ii) Let KAN0; L þ 1AN0 and c41: A K times differentiable complex-valued
function aðxÞ in Rn (continuous if K ¼ 0) is called an ðs; p;CÞK ;L-atom if for some

nAN0;

supp aCcQnm; for some mAZn;

jDaaðxÞjp2
�n s�n

p

� �
þjajn

Cð2�nÞ�1; for jajpK ;

and Z
Rn

xbaðxÞ dx ¼ 0; if jbjpL:
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If the atom aðxÞ is located at Qnm; that means

supp aCcQnm; with nAN0; mAZn;

then we write it as anmðxÞ: The sequence spaces bpq are defined as follows:

Definition 2.2. Let l ¼ flnmAC : nAN0;mAZng; and 0op; qpN: Then

bpq ¼ l : jjl j bpqjj ¼
XN
n¼0

X
mAZn

jlnmjp
 !q=p

0@ 1A1=q

oN

8><>:
9>=>;

(with the usual modification if p ¼ N or/and q ¼ N).

For 0oppN we put sp :¼ nð1=p � 1Þþ:

Theorem 2.3. Let KAN0 and L þ 1AN0 with

KXð1þ ½s�Þþ and LXmaxð�1; ½sp � s�Þ

be fixed. Then fAS0 belongs to B
ðs;CÞ
pq if, and only if, it can be represented as

f ¼
XN
n¼0

X
mAZn

lnm anmðxÞ; convergence being in S0; ð11Þ

where lAbpq and anmðxÞ are 1K -atoms ðn ¼ 0Þ or ðs; p;CÞK ;L-atoms ðnANÞ according

to Definition 2.1. Furthermore

inf jjljbpqjj;

where the infimum is taken over all admissible representations (11), is an equivalent

quasi-norm in B
ðs;CÞ
pq :

This theorem coincides with [43, Theorem 1.18 (ii)] when C is an admissible
function. The general case is covered by Farkas and Leopold [23, Theorem 4.4.3],
and Bricchi [3, Theorem 2.3.7(i)].

2.2. Characterisation by approximation

For each pAð0;N� we consider the class

Up : fa ¼ ðajÞNj¼0 : ajAS0-Lp; supp bajajCfy : jyjp2jþ1g; jAN0g;

cf. [50, 2.5.3/(4), p. 80].
Taking advantage of Proposition 1.3(i), the proof of Theorem 2.5.3(i) in [50, p. 81]

can be appropriately modified in order to obtain the following:
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Theorem 2.4. Let 0op; qpN; C be a slowly varying function and s4sp: Then

Bðs;CÞ
pq ¼ fAS0 : ( a ¼ ðajÞNj¼0AUp such that f ¼ lim

k-N

ak in S0 and

�

jj f jBðs;CÞ
pq jja :¼ jja0jLpjj þ

XN
k¼1

2skqCð2�kÞqjj f � akjLpjjq
 !1=q

oN

9=;
(with the usual modification if q ¼ N). Furthermore,

jj f jBðs;CÞ
pq jjX :¼ inf jj f jBðs;CÞ

pq jja;

where the infimum is taken over all admissible systems aAUp; is an equivalent quasi-

norm in B
ðs;CÞ
pq :

2.3. Characterisation by differences

Next, we recall the definition of differences of functions. If f is an arbitrary
function on Rn; hARn and kAN; then

ðDk
h f ÞðxÞ :¼

Xk

j¼0

k

j

� 	
ð�1Þk�j

f ðx þ jhÞ; xARn:

Note that Dk
h can also be defined iteratively via

ðD1
h f ÞðxÞ ¼ f ðx þ hÞ � f ðxÞ and ðDkþ1

h f ÞðxÞ ¼ D1
hðDk

h f ÞðxÞ; kAN:

For convenience we may write Dh instead of D1
h: Furthermore, the kth modulus of

smoothness of a function fALp; 1pppN; kAN; is defined by

okð f ; tÞp ¼ sup
jhjpt

jjDk
h f jLpjj; t40: ð12Þ

We shall simply write oð f ; tÞp instead of o1ð f ; tÞp and oð f ; tÞ instead of oð f ; tÞ
N
:

Theorem 2.5. Let 0op; qpN; s4sp; and C be a slowly varying function. If k is an

integer such that k4s; then

jj f jBðs;CÞ
pq jjðkÞ :¼ jj f jLpjj þ

Z 1

0

okð f ; tÞp

tsCðtÞ�1

 !q
dt

t

 !1=q

(with the usual modification if q ¼ NÞ is an equivalent quasi-norm in B
ðs;CÞ
pq :

The proof follows closely the proof of the analogous assertion when C � 1 given
in [50, 2.5.12, pp. 110–112], with the appropriate modifications in view of
Proposition 1.3(i). Again, many results of the above type can be found in the
already mentioned papers by Gol’dman and Kalyabin, for instance.

In connection with this type of characterisation we refer also to [36, Theorem 8.2].

ARTICLE IN PRESS
D.D. Haroske, S.D. Moura / Journal of Approximation Theory 128 (2004) 151–174 161



Example 2.6. We return to our example Cb given by (3). Assume bAR; 0op; qpN;
s4sp; and kAN with k4s: Then

jj f jBs;b
pq jjBjj f jLpjj þ

Z 1
2

0

okð f ; tÞp

tsjlog tj�b

" #q
dt

t

 !1=q

(with the usual modification if q ¼ NÞ; see Example 1.6.

3. Continuity envelopes: the main result

Recall that we shall write A
ðs;CÞ
p;q for both B

ðs;CÞ
p;q and F

ðs;CÞ
p;q as long as no distinction

is needed. Note that A
ðs;CÞ
pq +C for 0op; qpN (with poN in the F -case), s4n

p
; and

C a slowly varying function; this follows immediately from (7) together with the
corresponding well-known results for spaces As

pq: Thus, by Definition 1.8, it is

reasonable to study continuity envelopes in that situation. Moreover, by an

analogous argument it turns out that A
ðs;CÞ
pq +Lip1 for s4n

p
þ 1; according to

Remark 1.10 these spaces are not investigated further. Hence—postponing the tricky
limiting situations s ¼ n

p
and s ¼ n

p
þ 1 (where the remaining indices p and q have to

interplay with C appropriately) to separate studies in the future—we are left to

consider spaces A
ðs;CÞ
pq with n

p
oson

p
þ 1: Our result is the following.

Theorem 3.1. Let 0op; qpN (with poN in the F -case), 0oso1; s ¼ n
p
þ s; and C

be a slowly varying function. Then:

(i) ECðBðs;CÞ
pq Þ ¼ ðt�ð1�sÞCðtÞ�1; qÞ;

(ii) ECðF ðs;CÞ
pq Þ ¼ ðt�ð1�sÞCðtÞ�1; pÞ:

Proof. The proof follows the one of Haroske [31, Theorem 6.2.1] for As
pq ðC � 1Þ;

with the appropriate modifications.
Step 1: We show

E
B
ðs;CÞ
Nq

C ðtÞpct�ð1�sÞCðtÞ�1; tAð0; 1Þ; ð13Þ

as the elementary embedding

Bðs;CÞ
pq +Bðs;CÞ

Nq ; s ¼ n

p
þ s; 0opoN; 0oqpN; ð14Þ

(consequence of Proposition 1.7 and the corresponding well-known assertion for
C � 1), then implies

E
B
ðs;CÞ
pq

C ðtÞpct�ð1�sÞCðtÞ�1; tAð0; 1Þ;
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in view of Proposition 1.9(i). Recall that by Theorem 2.5 (where we can choose
k ¼ 14s now)

jj f jBðs;CÞ
Nq jjBjj f jLNjj þ

Z 1

0

oð f ; tÞ
tsCðtÞ�1

 !q
dt

t

 !1=q

: ð15Þ

Let fAB
ðs;CÞ
Nq with jj f jBðs;CÞ

Nq jjp1: Then by (15) and the fact that oð f ;tÞ
t

is equivalent to

a monotonically decreasing function, see [15, Chapter 2, Lemma 6.1, p. 43] or [31,
Proposition 4.3.3(i)], we obtain for any tAð0; 1Þ;

oð f ; tÞ
t

Z t

0

tð1�sÞq�1 CðtÞq dt

� 	1=q

p c1

Z t

0

oð f ; tÞ
tsCðtÞ�1

 !q
dt

t

 !1=q

p c2jj f jBðs;CÞ
Nq jjpc2: ð16Þ

Taking into account Proposition 1.3(ii), for e40 there is a decreasing function h such
that t�e CðtÞBhðtÞ; tAð0; 1�: Then the left-hand side of (16) can be further estimated
from below by

c1
oð f ; tÞ

t
hðtÞ

Z t

0

tð1þe�sÞq�1 dt

� 	1=q

X c2
oð f ; tÞ

t
hðtÞ t1þe�s

X c3
oð f ; tÞ

t
t1�s CðtÞ;

leading to

oð f ; tÞ
t

pct�ð1�sÞCðtÞ�1;

for all fAB
ðs;CÞ
Nq with jj f jBðs;CÞ

Nq jjp1; and hence (13).

Step 2: We verify

E
B
ðs;CÞ
pq

C ðtÞXct�ð1�sÞCðtÞ�1; tAð0; 2�1�; ð17Þ

and adapt the corresponding proof in [31, Theorem 6.2.1] appropriately. For that

reason recall the atomic decomposition of spaces B
ðs;CÞ
pq given in Theorem 2.3.

According to this we know that functions

fjðxÞ ¼ 2�jsCð2�jÞ�1jð2jxÞ; jAN;

are atoms in B
ðs;CÞ
pq (no moment conditions needed), where j is a compactly

supported CN function, thought as a mollified version of

ejjðxÞ ¼ 0; jxjX1;

1� jxj; jxjp1;

�
xARn:

Then clearly

oðejjð2j	Þ; tÞ
t

¼ 2j; tB2�j ; jAN;
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and hence

oð fj; tÞ
t

B2jð1�sÞCð2�jÞ�1; tB2�j; jAN:

Moreover, jj fjjBðs;CÞ
pq jjB1: Consequently, we arrive at

E
B
ðs;CÞ
pq

C ð2�jÞXc
oð fj ; 2

�jÞ
2�j

Xc02jð1�sÞCð2�jÞ�1; jAN;

and this leads to (17) finally, since CðtÞBCð2�jÞ; tA½2�ðjþ1Þ; 2�j�; jAN; due to
Proposition 1.3(i).

Step 3: For simplicity, we shall write uB instead of uX when X ¼ B
ðs;CÞ
pq in the

sequel. We first prove uBpq: In view of our results in the preceding steps together
with (14) and another application of Proposition 1.9(ii) it is sufficient to prove uXpq

for X ¼ B
ðs;CÞ
Nq : But this follows immediately from (15) and the already established

equivalence

E
B
ðs;CÞ
Nq

C ðtÞBt�ð1�sÞCðtÞ�1; tAð0; 1Þ;

granted that mH from Definition 1.8(ii) behaves like

mHðdtÞBdt

t
: ð18Þ

Note that by Proposition 1.3(iii), there exists a positive CN function h such that

hðtÞBt1�sCðtÞ in ð0; 1� and

lim
t-0

t
h0ðtÞ
hðtÞ ¼ 1� s40:

Therefore, h is increasing in some neighbourhood ð0; e� of the origin with

h0ðtÞ
hðtÞB

1

t
; tAð0; e�; ð19Þ

and, moreover, by Steps 1 and 2,

hðtÞ�1Bt�ð1�sÞCðtÞ�1BE
B
ðs;CÞ
pq

C ðtÞ; tAð0; e�:

In view of Definition 1.8(ii) we then obtain

HðtÞ ¼ �log E
B
ðs;CÞ
pq

C ðtÞBlog hðtÞ; tAð0; e�;

and (19) yields (18).
Step 4: In case of the B-spaces it remains to derive fromZ e

0

oð f ; tÞ
tsCðtÞ�1

" #v
dt

t

 !1=v

pcjj f jBðs;CÞ
pq jj ð20Þ

for some c40 and all fAB
ðs;CÞ
pq that vXq; recall (9) and (18). We make use of a

suitable combination of our extremal functions fj from Step 2, see the corresponding
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proof in [31, Theorem 6.2.1]. Put

f ðxÞ ¼
XN
j¼1

bj2
�jsCð2�jÞ�1jð2jx � yjÞ; xARn;

where j is as above, bjX0; jAN; ðbjÞjANAcq; and the yj are chosen such that the

supports of jð2j 	 �yjÞ and jð2k 	 �ykÞ are disjoint for jak; j; kAN: Then by

Theorem 2.3 f belongs to B
ðs;CÞ
pq with

jj f jBðs;CÞ
pq jjpcjjbjcqjj: ð21Þ

Let JAN be such that 2�JBe for e given by (20). For simplicity, we may assume
bj � 0; j ¼ 1;y; J � 1: By our assumptions,

oð f ; 2�jÞXbj2
�jsCð2�jÞ�1oðjð2j 	 �yjÞ; 2�jÞXcbj2

�jsCð2�jÞ�1

and consequently, involving (20), (21) and bj � 0; joJ; additionally,

XN
j¼J

bv
j

 !1=v

p
XN
j¼J

oð f ; 2�jÞ
2�jsCð2�jÞ�1

" #v !1=v

B
Z e

0

oð f ; tÞ
tsCðtÞ�1

" #v
dt

t

 !1=v

p c1jj f jBðs;CÞ
pq jjpc2jjbjcqjjB

XN
j¼J

b
q
j

 !1=q

from whence we conclude vXq: Thus part (i) of the theorem is proved.
Step 5: Let s04s4s and s0 � n

p0
¼ s � n

p
¼ s: As a consequence of Proposition 1.7

and the embedding assertion in e.g. [52, 11.4, p. 55] it holds

Bðs0;CÞ
p0p +F ðs;CÞ

pq +Bðs;CÞ
Np :

Then, due to Proposition 1.9, (ii) is a consequence of (i). &

Remark 3.2. When C � 1; Theorem 3.1 coincides with [31, Theorem 6.2.1].

Example 3.3. Using our particular choice Cb given by (3), Theorem 3.1 reads as

ECðBs;b
pq Þ ¼ ðt�ð1�sÞjlog tj�b; qÞ;

and

ECðF s;b
pq Þ ¼ ðt�ð1�sÞjlog tj�b; pÞ;

where bAR; 0op; qpN (with poN in the F -case), 0oso1 and s ¼ n
p
þ s:

As a first application we can conclude some Hardy-type inequalities. This follows
immediately from our above assertions together with the monotonicity (10), see [53,
Proposition 12.2, pp. 183–184], and the fact that

sup
t40

KðtÞ
EX

C ðtÞ
oð f ; tÞ

t
pc
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holds for some c40 and all fAX ; jj f jX jjp1; if, and only if, K is bounded, see [31,
Proposition 4.3.3(iv)].

Corollary 3.4. Let p; q; s; s and C as in Theorem 3.1.

(i) Let KðtÞ be a positive monotonically decreasing function on ð0; e� and let 0oupN:
Then Z e

0

ðKðtÞt�sCðtÞoð f ; tÞÞu dt

t

� 	1=u

pcjj f jBðs;CÞ
pq jj

for some c40 and all fAB
ðs;CÞ
pq if, and only if, K is bounded and qpupN; with the

modification

sup
tAð0;eÞ

KðtÞt�sCðtÞoð f ; tÞpcjj f jBðs;CÞ
pq jj ð22Þ

if u ¼ N: In particular, if K is an arbitrary non-negative function on ð0; e�; then

(22) holds if, and only if, K is bounded.
(ii) Let KðtÞ be a positive monotonically decreasing function on ð0; e� and let 0oupN:

Then Z e

0

ðKðtÞt�sCðtÞoð f ; tÞÞu dt

t

� 	1=u

pcjj f jF ðs;CÞ
pq jj

for some c40 and all fAF
ðs;CÞ
pq if, and only if, K is bounded and ppupN; with the

modification

sup
tAð0;eÞ

KðtÞt�sCðtÞoð f ; tÞpcjj f jF ðs;CÞ
pq jj ð23Þ

if u ¼ N: In particular, if K is an arbitrary non-negative function on ð0; e�; then

(23) holds if, and only if, K is bounded.

4. Entropy and approximation numbers

We study compact embeddings of function spaces of generalised smoothness and
qualify their compactness further by means of entropy numbers and approximation
numbers, respectively; here we shall essentially gain from our above envelope results.
First, we briefly recall these concepts.

Let A1 and A2 be two complex (quasi-) Banach spaces and let T be a linear and
continuous operator from A1 into A2: If T is compact then for any given e40 there
are finitely many balls in A2 of radius e which cover the image TðUA1

Þ of the unit ball
UA1

¼ faAA1 : jjajA1jjp1g:

Definition 4.1. Let kAN and let T : A1-A2 be the above continuous operator.

(i) The kth entropy number ek of T is the infimum of all numbers e40 such that

there exist 2k�1 balls in A2 of radius e which cover TðUA1
Þ:
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(ii) The kth approximation number ak of T is the infimum of all numbers jjT � Sjj
where S runs through the collection of all continuous linear maps from A1 to A2

with rank Sok;

akðTÞ ¼ inffjjT � Sjj : SALðA1;A2Þ; rank Sokg:

For details and properties of entropy and approximation numbers we refer to
[11,16,37,48] (restricted to the case of Banach spaces), and [20] for some extensions
to quasi-Banach spaces. Obviously, entropy numbers ‘measure’ the compactness of
operators in geometrical terms whereas approximation numbers characterise it by
approximation with finite-rank operators.

Remark 4.2. A strong motivation to study entropy numbers as well as approxima-
tion numbers comes from spectral theory, in particular, the investigation of
eigenvalues of compact operators. Though these consequences are out of the scope
of the present paper, we briefly recall some ideas. Let A be a complex (quasi-)
Banach space and TALðAÞ compact. Then the spectrum of T (apart from the point
0) consists only of eigenvalues of finite algebraic multiplicity, fmkðTÞgkAN; ordered as

usual jm1ðTÞjXjm2ðTÞjX?X0: Carl’s inequality gives an excellent link between
entropy numbers and eigenvalues of T :

Yk

m¼1

jmmðTÞj
 !1=k

p inf
nAN

2
n
2kenðTÞ; kAN; ð24Þ

in particular,

jmkðTÞjp
ffiffiffi
2

p
ekðTÞ: ð25Þ

This result was originally proved by Carl [10] and Carl and Triebel [12] when A is a
Banach space. An extension to quasi-Banach spaces can be found in [20, Theorem
1.3.4, p. 18]. Conversely, we may also gain from the study of approximation numbers
when dealing with eigenvalue estimates, where it is reasonable to concentrate on the
Hilbert space setting first. Let H be a complex Hilbert space and TALðHÞ
compact, the non-zero eigenvalues of which are denoted by fmkðTÞgkAN again; then

T�T has a non-negative, self-adjoint, compact square root jT j; and for all kAN;

akðTÞ ¼ mkðjT jÞ; ð26Þ

see [16, Theorem II.5.10, p. 91]. Hence, if in addition T is non-negative and self-
adjoint, then the approximation numbers of T coincide with its eigenvalues. Outside
Hilbert spaces the results are less good but still very interesting, cf. [11,16,37,48] for
further details.

The interplay between continuity envelopes and approximation numbers relies on
the following outcome.
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Proposition 4.3. Let X be some Banach space defined on the unit ball U in Rn with

XðUÞ+CðUÞ: Then there is some c40 such that for all kAN;

akðid : XðUÞ-CðUÞÞpck�1
nEX

C ðk
�1

nÞ: ð27Þ

This result can be found in [7]; it is essentially based on an estimate obtained by
Carl and Stephani [11, Theorem 5.6.1, p. 178].

We return to the function spaces studied above. Note that there cannot be a

compact embedding between spaces on Rn; the counterpart for spaces A
ðs;CÞ
pq ðRnÞ

follows immediately from the well-known fact for spaces As
pqðRnÞ and (7). Let U be

the unit ball in Rn; we deal with spaces A
ðs;CÞ
pq ðUÞ now defined by restriction from

their Rn-counterparts. Checking the argument in our proof one immediately verifies
that Theorem 3.1 can be transferred to spaces on domains without any difficulty, i.e.

we have for the local continuity envelopes ECðAðs;CÞ
pq ðUÞÞ ¼ ECðAðs;CÞ

pq ðRnÞÞ:
Combining (the counterpart of) Theorem 3.1 with (27) immediately leads to the
upper estimate in the following proposition.

Proposition 4.4. Let 2pppN (with poN in the F -case), 0oqpN; sAR with
n
p
oson

p
þ 1; and C be a slowly varying function. Then

akðid : Bðs;CÞ
pq ðUÞ-CðUÞÞBk

�s
n
þ1

pCðk�1
nÞ�1; kAN: ð28Þ

The same is true with B
ðs;CÞ
pq ðUÞ replaced by F

ðs;CÞ
pq ðUÞ:

Proof. Note that the restriction pX2 is due to the lower estimate; it is, however, to
expect, in view of related situations, say, when C � 1; see Remark 4.6.

Step 1: The upper estimate in (28) is a direct consequence of Theorem 3.1 and (27).

Note that the difficulty with 0op; qo1; when the spaces B
ðs;CÞ
pq ðUÞ are not Banach

spaces and hence Proposition 4.3 cannot be applied directly, can easily be

surmounted by a continuous embedding argument B
ðs;CÞ
pq ðUÞ+B

ðs;CÞ
rq̂ ðUÞ; where

po1or; s � n
p
¼ s� n

r
; q̂ ¼ maxðq; 1Þ; in view of the multiplicativity of approxima-

tion numbers.
Step 2: For the estimate from below we make use of the special lift property

Proposition 1.7 together with related results for C � 1: Let mAR be such that
0omo1: Then by the multiplicativity of approximation numbers,

a2kðid : Bðs;CÞ
pq ðUÞ-Bð�m;CÞ

NN
ðUÞÞ

pakðid : Bðs;CÞ
pq ðUÞ-CðUÞÞakðid : CðUÞ-Bð�m;CÞ

NN
ðUÞÞ:

It is thus sufficient to show that

a2kðid : Bðs;CÞ
pq ðUÞ-Bð�m;CÞ

NN
ðUÞÞXc1k

�sþm
n

þ1
p; ð29Þ
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for 2pppN; and

akðid : CðUÞ-Bð�m;CÞ
NN

ðUÞÞpc2k�m
nC k�1

n

� 	
ð30Þ

in order to verify the estimate from below. In the spirit of Proposition 1.7 we can
simplify (29) by

a2kðid : Bðs;CÞ
pq ðUÞ-Bð�m;CÞ

NN
ðUÞÞBa2kðid : Bs

pqðUÞ-B�m
NN

ðUÞÞ;

the rest being a consequence of the well-known result [20, Theorem 3.3.4, p. 119] for
C � 1; see also (32) below. For the required extension operators we refer to [35,41];
see also the survey article [36]. These papers cover more general settings, too; we
proceed by extension and restriction in the usual way. Concerning (30),

CðUÞ+B0
NN

ðUÞ leads to

akðid : CðUÞ-Bð�m;CÞ
NN

ðUÞÞpcakðid : B0
NN

ðUÞ-Bð�m;CÞ
NN

ðUÞÞ:

The usual lift operator

Is f ¼ ðð1þ jxj2Þs=2 bff Þ3; fAS0; ð31Þ

maps A
ðs;CÞ
pq isomorphically onto A

ðs�s;CÞ
pq ; cf. [3, Proposition 2.2.19]; here we use

again a result on Rn; but it can be adapted to our setting in the above-described way.
Thus this lifting argument together with another application of Proposition 1.7 and

CðUÞ+B0
NN

ðUÞ provide

akðid : B0
NN

ðUÞ-Bð�m;CÞ
NN

ðUÞÞ

pc1akðid : Bm
NN

ðUÞ-Bð0;CÞ
N N

ðUÞÞ

pc2akðid : Bðm;C�1Þ
NN

ðUÞ-B0
N N

ðUÞÞ

pc3akðid : Bðm;C�1Þ
NN

ðUÞ-CðUÞÞ

pc4k�m
n C k�1

n

� 	�1
" #�1

¼ c4k�m
nC k�1

n

� 	
;

where we finally applied Step 1. This yields (30) and finishes the proof. &

Remark 4.5. Following the above proof it is clear that the target space CðUÞ can be

replaced by B0
N;NðUÞ without any difficulty. When C is an admissible function,

taking the special features of admissible functions into account—cf. [8, Lemma
2.3(ii)]—, we could simplify (28) by

akðid : Bðs;CÞ
pq ðUÞ-CðUÞÞBk

�s
n
þ1

pCðk�1Þ�1; kAN;

thus hiding the influence of the underlying measure space Rn equipped with the
Lebesgue measure cn:
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Remark 4.6. When C � 1; the situation is well-known apart from some limiting
cases: let 0op; qpN (with poN in the F -case), s4n

p
; then for all kAN;

akðid : Bs
pqðUÞ-CðUÞÞB

k
�ðs

n
�1

p
Þ
; 2pppN;

k
�ðs

n
�1

p
Þp

0

2 ; 1opo2; son;

k�ðs
n
�1
2
Þ; 1opo2; s4n;

8>>>><>>>>: ð32Þ

where p0 is given by 1
p
þ 1

p0 ¼ 1; 1opoN; as usual; cf. [6,20, Theorem 3.3.4, p. 119].

In particular, (28) coincides with the first line of (32) for C � 1: Moreover, (32) also
suggests that for po2 the upper estimate obtained in Step 1 of the proof of
Proposition 4.4 for all 0oppN (i.e. also for 0opo2) is certainly not asymptotically
sharp; it differs for po2 and pX2: This phenomenon is well-known for
approximation numbers.

Dealing with entropy numbers instead, sharp asymptotic estimates in case of
C � 1 are completely covered by [20, Theorem 3.3.3/2, p. 118],

ekðid : Bs
pqðUÞ-CðUÞÞBk�s

n; ð33Þ

where 0op; qpN and sAR with s4n
p
:

Corollary 4.7. Let 2pppN (with poN in the F -case), 0oqpN; s1; s2AR with
n
p
os1 � s2on

p
þ 1; a1; a2AR and C be a slowly varying function. Then for all kAN;

akðid : Bðs1;Ca1 Þ
pq ðUÞ-Bðs2;Ca2 Þ

NN
ðUÞÞBk

�s1�s2
n

þ1
pCðk�1

nÞa2�a1 : ð34Þ

The same is true with B
ðs1;Ca1 Þ
pq ðUÞ replaced by F

ðs1;Ca1 Þ
pq ðUÞ:

Proof. Note that for a slowly varying function C any function Ca; aAR; is slowly
varying, too. Then the assertion is an immediate consequence of Propositions 4.4,

1.7, Remark 4.5 and an application of the lift operator Is from (31) mapping A
ðs;CÞ
pq

isomorphically onto A
ðs�s;CÞ
pq ; cf. [3, Proposition 2.2.19; 50, Theorem 2.3.8, p. 58] for

C � 1;

akðid : Bðs1;Ca1 Þ
pq ðUÞ-Bðs2;Ca2 Þ

NN
ðUÞÞ

Bakðid : Bðs1�s2;Ca1�a2 Þ
pq ðUÞ-B0

NN
ðUÞÞBk

�s1�s2
n

þ1
pCðk�1

nÞa2�a1

for kAN: &

Example 4.8. We return to our particular choice Cb given by (3), in particular, with
a1 :¼ b1; a2 :¼ b2: Then (34) reads as

akðid : Bs1;b1
pq ðUÞ-Bs2;b2

NN
ðUÞÞBk

�s1�s2
n

þ1
pð1þ log kÞb2�b1 ; kAN;

where 2pppN; 0oqpN; n
p
os1 � s2on

p
þ 1; and b1; b2AR:
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Using a rather rough general estimate between entropy and approximation
numbers we can reformulate Proposition 4.4 in terms of entropy numbers.

Corollary 4.9. Let 0op; qpN (with poN in the F -case), s1; s2AR with n
p
os1 �

s2on
p
þ 1; a1; a2AR; and C be a slowly varying function. Then there are numbers

c24c140 such that for all kAN;

c1k�s1�s2
n Cðk�1

nÞa2�a1p ekðid : Bðs1;Ca1 Þ
pq ðUÞ-Bðs2;Ca2 Þ

NN
ðUÞÞ

p c2k
�s1�s2

n
þ1

pCðk�1
nÞa2�a1 : ð35Þ

The same is true with B
ðs1;Ca1 Þ
pq ðUÞ replaced by F

ðs1;Ca1 Þ
pq ðUÞ:

Proof. For the upper estimate we combine (34) and the following: Let TALðA1;A2Þ
be a compact operator between quasi-Banach spaces A1; A2: Assume that there is
some c040 with a2j�1ðTÞpc0a2j ðTÞ for all jAN: Then

ekðTÞpcakðTÞ

for some c40 and all kAN: Details can be found in [51]; there is a forerunner in [11,
p. 96] restricted to Banach spaces. The extension to po2—comparing Corollaries 4.9
and 4.7—is covered by embedding arguments again or directly by Step 1 of the proof
of Proposition 4.4.

The lower estimate is obtained in exactly the same way as in Step 2 of the proof of
Proposition 4.4 with the only modification that (29) has to be replaced by

e2kðid : Bðs;CÞ
pq ðUÞ-Bð�m;CÞ

NN
ðUÞÞXck�sþm

n ; ð36Þ

valid for all 0oppN; see [20, Theorem 3.3.3/2, p. 118] and (33). The rest is lifting. &

Remark 4.10. Comparison with the situation C � 1 recalled in (33) suggests that the
upper estimate in (35) is not sharp apart from the case p ¼ N: Moreover, this
assumption is supported by Leopold’s results on entropy numbers and approxima-
tion numbers in spaces of generalised smoothness; concerning approximation
numbers he obtained a sequence space result similar to Proposition 4.4 in [40,
Corollary 1] with a (function space) forerunner in [38, Remark 4]. As far as we know
there are no further results in this direction. Similarly, in the context of entropy
numbers, Leopold proved in [40, Theorems 3,4] (with forerunners in [38,39]) sharp
asymptotic estimates, using (sub-) atomic decomposition techniques and sequence
space assertions. For instance, with Cb given by (3), [39, Theorem 3] states that

ekðid : Bs1;b
pq ðUÞ-Bs2

NN
ðUÞÞBk�s1�s2

n ð1þ log kÞ�b; kAN;

where 0op; qpN; s1 � s24n
p
; and bAR:

Further entropy and approximation number results (related to the case s1 � s2 ¼
n
p
þ 1; which is out of the scope of the present paper) can also be found in

[14,17,18,38,39].
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Finally, entropy numbers for embeddings of spaces of generalised smoothness
were already studied in [43, Theorem 3.13], but in the context of spaces defined on
(fractal) ðd;CÞ-sets.
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[14] F. Cobos, Th. Kühn, Entropy numbers of embeddings of Besov spaces in generalized Lipschitz

spaces, J. Approx. Theory 112 (2001) 73–92 doi:10.1006/jath.2001.3594.

[15] R. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

[16] D.E. Edmunds, W.D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford,

1987.

[17] D.E. Edmunds, D.D. Haroske, Spaces of Lipschitz type, embeddings and entropy numbers,

Dissertationes Math. 380 (1999) 1–43.

[18] D.E. Edmunds, D.D. Haroske, Embeddings in spaces of Lipschitz type, entropy and approximation

numbers, and applications, J. Approx. Theory 104 (2) (2000) 226–271 doi:10.1006/jath.2000.3453.

[19] D.E. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant

quasinorms, J. Funct. Anal. 170 (2000) 307–355.

ARTICLE IN PRESS
D.D. Haroske, S.D. Moura / Journal of Approximation Theory 128 (2004) 151–174172



[20] D.E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge

University Press, Cambridge, 1996.

[21] D.E. Edmunds, H. Triebel, Spectral theory for isotropic fractal drums, C. R. Acad. Sci. Paris 326 (I)

(1998) 1269–1274.

[22] D.E. Edmunds, H. Triebel, Eigenfrequencies of isotropic fractal drums, Oper. Theory Adv. Appl. 110

(1999) 81–102.

[23] W. Farkas, H.-G. Leopold, Characterisation of function spaces of generalised smoothness, Ann. Mat.

Pura Appl., to appear.

[24] M.L. Gol’dman, The description of traces for certain function spaces, Proc. Steklov Inst. Math. 150

(1981) 105–133 (translation from Trudy Mat. Inst. Steklova 150 (1979) 99–127).

[25] M.L. Gol’dman, A covering method for describing general spaces of Besov type, Proc. Steklov Inst.

Math. 156 (1983) 51–87 (translation from Trudy Mat. Inst. Steklova 156 (1980) 47–81).

[26] M.L. Gol’dman, Imbedding theorems for anisotropic Nikol’skij-Besov spaces with moduli of

continuity of general form, Proc. Steklov Inst. Math. 170 (1987) 95–116 (translation from Trudy Mat.

Inst. Steklova 170 (1984) 86–104).

[27] M.L. Gol’dman, On imbedding constructive and structural Lipschitz spaces in symmetric spaces,

Proc. Steklov Inst. Math. 173 (1987) 93–118 (translation from Trudy Mat. Inst. Steklova 173 (1986)

90–112).

[28] M.L. Gol’dman, An imbedding criterion for different metrics for isotropic Besov spaces with

arbitrary moduli of continuity, Proc. Steklov Inst. Math. 201 (1994) 155–181 (translation from Trudy

Mat. Inst. Steklova 201 (1992) 186–218).

[29] D.D. Haroske, On more general Lipschitz spaces, Z. Anal. Anwendungen 19 (3) (2000) 781–799.

[30] D.D. Haroske, Envelopes in function spaces—a first approach, preprint Math/Inf/16/01, University

of Jena, Germany, 2001.

[31] D.D. Haroske, Limiting embeddings, entropy numbers and envelopes in function spaces, University

of Jena, Habilitationsschrift, 2002.

[32] G.A. Kalyabin, Characterization of spaces of generalized Liouville differentiation, Math. USSR Sb.

33 (1977) 37–42.

[33] G.A. Kalyabin, Descriptions of functions in classes of Besov–Lizorkin–Triebel type, Proc. Steklov

Inst. Math. 156 (1983) 89–118 (translation from Trudy Mat. Inst. Steklova 156 (1980) 82–109).

[34] G.A. Kalyabin, Criteria for the multiplicativity of spaces of Besov–Lizorkin–Triebel type and their

imbedding into C; Math. Notes 30 (1982) 750–755 (translation from Mat. Zametki 30 (1981)

517–526).

[35] G.A. Kalyabin, Extension theorems, multiplicators and diffeomorphisms for generalized Sobolev–

Liouville classes in domains with Lipschitz boundary, Trudy Mat. Inst. Steklova 172 (1985) 173–186

(Russian) (English translation: Proc. Steklov Inst. Math. 172 (1987) 191–205).

[36] G.A. Kalyabin, P.I. Lizorkin, Spaces of functions of generalized smoothness, Math. Nachr. 133

(1987) 7–32.

[37] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel, 1986.
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